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The free energy and the entropy of scalar field are calculated by brick-wall in the
axisymmetric Einstein—Maxwell-Dilaton-axion black hole. It is shown that when the
black hole has inner and outer horizons, the entropy is not only related to the area of
an outer horizon but also is the function of the area of an inner horizon. When the area
of an inner horizon approaches zero, we can obtain the known conclusion. The entropy
expressed by location parameter of outer horizon and inner horizons approaches absolute
zero. It obeys Nernst theorem. It can be taken as Planck absolute entropy of a black hole.

Since Bekenstein and Hawking have proposed that the entropy of a black hole
is proportional to the area of the horizon (Bekenstein, 1973; Gibbons and Hawking,
1977; Hawking, 1975), the statistical source of the black hole entropy have been
studied. Each method of studying the entropy has been givenefGdi 1998;
Cognola and Lecca, 1998; Hochbesal., 1993; Leeet al., 1996; Padmanaban,
1989; 't Hooft, 1985). G.'t Hooft’s brick-wall method is often used ('t Hooft, 1985).
The statistical property of a free scalar field in different kinds of black hole is stud-
ied by this method (Shen and Chen, 1999; Solodukhin, 1995a,b). The entropy
expressed by the area of horizon has been obtained and the fact that entropy is pro-
portional to the area of the outer horizon has been proved. In Schwarzschild space—
time ('t Hooft, 1985), when the cutoff satisfies the proper condition, the entropy
has the form o = Ay /4. When the cutoff approaches zero, the entropy diverges.
G.'t Hooft thought that this divergence was caused by the infinite density of states
near horizon. Afterward the entropy of every black hole is studied by this way (Shen
and Chen, 1999; Solodukhin, 1995b); when the brick-wall method is used, we only
considered the contribution from the outer horizon and neglected the contribution
from the inner horizon. By this way, we obtain that the entropy is proportional to the
area of the outer horizon. However, the conclusion does not satisfy Nernst theorem.
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In this paper, in the process of integration, we not only consider the contribu-
tion from outer horizon but also consider the effect from inner horizon, and obtain
the free energy and entropy of a black hole by the brick-wall method. When the
area of a inner horizon approaches zero, the entropy returns to the known result.
Further, when the radiation temperature of a black hole approaches absolute zero,
the entropy expressed by location parameter of outer and inner horizon approaches
zero. It satisfies Nernst theorem.

In curved space-time, the dynamic behavior of the massless particle can be
described by Klein—Gordon equation:
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The linear element is given in axisymmetric Einstein—Maxwell-Dilaton-
axion space—-time by Garcé al. (1995)
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M=m-D, J=a(m-D), Q=,2wD(D—-m), and P =g,

whereM, J, Q, andP are mass, angular momentum, charge, and magnetic charge,
respectively. We use G.t Hooft’s theory and let

v(r)=0 whenr <r, +e¢
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and
Y(r)=0 whenr > L,

where

Q2 Q2 2
=(M-— M — _ a2
+ ( 20M * 20M a
is the position of outer horizon of a black holeand L are the ultraviolet and
infrared cutoffs, respectively, and > r,. Using the WKB approximation, the
wave function of Eq. (1) is
Y = exp[—iEt +img +iS(r, 0)] 3
Letting P, = 9, Sand P, = 9, Sfrom (1) and (2) we obtain (Manet al,, 1992):
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The number of micro states with eneryand angular momenturd,, is
(Padmanaban, 1989):
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The free energy of system can be expressed by (Shen and Chen, 1999):
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we can assume that the scalar field rotates with a dragging vefocity2, (Shen
and Chen, 1999) and obtain
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where
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is the position of inner horizon of a black hole. Substituting (2) and (8) into (5),
we have
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Because our integral region is out of a black hole horizon, we have, then
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In Eq. (10), we only take the divergent term, wher> 0, and have
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Other integral terms which are the contribution from the vacuum surrounding the
system at large distances and of little relevance here, and can be neglected. In
the approximation, the free energy of a scalar field in the axisymmetric Einstein—
Maxwell-Dilaton-axion black hole is
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Using the relation between the entropy and free energy of the system

_ p20F
S=8 TR (13)
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we obtain:
S=S§, +8S, (14)

where
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From Eq. (16), when we fix the lower limit of the integral + ¢ and ex-
changer, for r_, we have the same result of (15). So we can t8kes a con-
tribution from the outer horizon and tak& as a contribution from the inner
horizon.

Substituting
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into (15) and (16), we get
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Using the relation between the area and location of horizon
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Whenr, — r_, temperature and entropy of the black hole approach zero. It
obeys the Nernst theorem.
Whenr_ — 0,
1 Ay An (r+ - D) 1

n-- (25)
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It returns to the result of 't Hooft (1985). From (20) and (21), whens> r_, the
contribution to entropy from_ can be neglected. From the first term of (20) and
(21), in other case, the contribution fram cannot be neglected.

On the basis of this analysis, starting with the scalar field equation of free
particles, we obtain the wave function by WKB approximation. The free energy
and entropy of a scalar field are calculated by brick-wall method. It is obtained that
the entropy of axisymmetric Einstein—-Maxwell-Dilation-axion black hole is the
function of outer and inner horizons. When>> r _ orr_ is very small comparing
with r_, the contribution to entropy from inner horizon can be neglected. When
r, andr_ are at the same quantitative standing, the contribution to entropy from
inner horizon cannot be neglected. If we take limit, the conclusion returns to the
known result (Shen and Chen, 1999). Errors caused by defining the entropy of a
black hole only by outer horizon surface are corrected. The entropy defined now
obeys the Nernst theorem.
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